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rylated SLR1 protein, we pretreated the wild
type and gid2-1 with uniconazol, an inhibitor of
GA biosynthesis. We detected one faint radio-
active band in uniconazol-pretreated wild type
and this band disappeared after treatment with
GA3 (Fig. 3C, lanes 1 and 2). This supports our
theory that the phosphorylated SLR1 protein is
destabilized by bioactive GA. In contrast, we
observed one strong radioactive band in gid2-1
and GA3 treatment increased its intensity (Fig.
3C, lanes 3 and 4). The mobility of the radio-
active band corresponded to the upper band in
gid2-1, and the intensity of the upper band
observed by immunoblotting increased after
treatment with GA (Fig. 3C, lanes 5 and 6).
This GA-induced phosphorylation of SLR1
protein in gid2-1 was gradually increased after
GA3 treatment (Fig. 3D). These results indicate
that GA increases SLR1 phosphorylation and
may lead to degradation of phosphorylated
SLR1 in wild type but that degradation of the
phosphorylated SLR1 in gid2 is inhibited and
consequently the protein is accumulated.

The fact that a loss of function in an F-box
protein, GID2, causes accumulation of the SLR1
protein leads us to speculate that GA-dependent
degradation of SLR1 protein is caused by the
ubiquitin/26S proteasome pathway. To test this
possibility, we examined the polyubiquitination
of SLR1 protein in vivo by immunoblotting with
antibody to ubiquitin (Ub). In wild type treated
with a proteasome inhibitor, MG132, a low level
of polyubiquitinated SLR1 was observed without
GA treatment (Fig. 3E, lane 1), and GA treatment
induced the accumulation of polyubiquitinated
SLR1 protein (Fig 3E, lane2). In contrast, in
gid2-1, we observed no ubiquitinated SLR1 with
or without GA treatment (Fig. 3E, lanes 3 and 4).
These results suggest that the SLR1 protein is
degraded via the ubiquitin/26S proteasome path-
way mediated by the SCFGID2 complex.

The F-box protein in the SCF complex func-
tions as a receptor that selectively recruits target
proteins into the complex to degrade these pro-
teins through ubiquitination. This SCF-mediat-
ed signaling pathway is well conserved in yeast,
mammals, and higher plants (21–25). Accord-
ing to recent advances in understanding SCF-
mediated pathways in yeast and animals (21–
23), modification of the target protein is a pre-
requisite for interaction between the target and
F-box proteins, and phosphorylation is one of
the most common types of modification of
target proteins. Although there are no previous

reports that phosphorylation of target proteins
triggers SCF-mediated degradation in plants,
our results indicate that GA-dependent phos-
phorylation of SLR1 triggers the ubiquitin-me-
diated degradation in a manner similar to the
SCF-mediated pathway in yeast and animals.
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Discrete Coding of Reward
Probability and Uncertainty by

Dopamine Neurons
Christopher D. Fiorillo,* Philippe N. Tobler, Wolfram Schultz

Uncertainty is critical in the measure of information and in assessing the
accuracy of predictions. It is determined by probability P, being maximal at P�
0.5 and decreasing at higher and lower probabilities. Using distinct stimuli to
indicate the probability of reward, we found that the phasic activation of
dopamine neurons varied monotonically across the full range of probabilities,
supporting past claims that this response codes the discrepancy between pre-
dicted and actual reward. In contrast, a previously unobserved response co-
varied with uncertainty and consisted of a gradual increase in activity until the
potential time of reward. The coding of uncertainty suggests a possible role for
dopamine signals in attention-based learning and risk-taking behavior.

The brain continuously makes predictions
and compares outcomes (or inputs) with
those predictions (1–4 ). Predictions are fun-
damentally concerned with the probability
that an event will occur within a specified
time period. It is only through a rich repre-
sentation of probabilities that an animal can
infer the structure of its environment and
form associations between correlated events
(4–7 ). Substantial evidence indicates that do-

pamine neurons of the primate ventral mid-
brain code errors in the prediction of reward
(8–10). In the simplified case in which re-
ward magnitude and timing are held constant,
prediction error is the discrepancy between
the probability P with which reward is pre-
dicted and the actual outcome (reward or no
reward). Thus, if dopamine neurons code re-
ward prediction error, their activation after
reward should decline monotonically as the

Table 1. Amounts of endogenous GAs in wild type and gid2 (ng per g of fresh weight).

GA53 GA44 GA19 GA20 GA1

Wild type
Lot 1 5.6 2.6 20 0.5 0.3
Lot 2 4.0 2.9 28 0.3 0.5

gid2-1
Lot 1 4.1 6.0 26 2.4 47
Lot 2 4.2 6.0 23 2.4 56
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probability of reward increases. However, in
varying probability across its full range (P �
0 to 1), a fundamentally distinct parameter is
introduced. Uncertainty is maximal at P �
0.5 but absent at the two extremes (P � 0 and
1) and is critical in assessing the accuracy of
a prediction. We examined the influence of
reward probability and uncertainty on the
activity of primate dopamine neurons.

Two monkeys were conditioned in a Pav-
lovian procedure with distinct visual stimuli
indicating the probability (P � 0, 0.25, 0.5,
0.75, and 1.0) of liquid reward being deliv-
ered after a 2-s delay (11). Anticipatory lick-
ing responses during the interval between
stimulus and reward increased with the prob-
ability of reward (Fig. 1), indicating that the
animals discriminated the stimuli behavioral-
ly. However, at none of the intermediate
probabilities was there a difference in the
amount of anticipatory licking between re-
warded and unrewarded trials (fig. S1). This
suggests that the expectation of reward did
not fluctuate significantly on a trial-by-trial
basis as a result of the monkey learning the
reward schedule (11).

Dopamine neurons of ventral midbrain
areas A8, A9, and A10 (fig. S2) were identi-
fied solely on the basis of previously de-
scribed electrophysiological characteristics,
particularly the long waveform of their im-
pulses (1.5 to 5.0 ms) (11). The analyses
presented here are for the entire population of
dopamine neurons sampled, without selection

for the presence of any event-related re-
sponse. Dopamine neurons (n � 188) showed
little or no response to fully predicted reward
(P � 1.0), but they displayed the typical
phasic activations (8–10) when reward was
delivered with P � 1.0, even after extensive
training (Fig. 2, A and B). The magnitude of
the reward responses increased as probability
decreased, as illustrated by linear regression
analyses (correlation coefficient r 2 � 0.97,
P � 0.002 and r 2 � 0.92, P � 0.01 in
monkeys A and B, respectively) (Fig. 2C and
fig. S3A) (12). Although dopamine neurons

discriminated the full range of probabilities
effectively as a population, in contrast to Fig.
2A, many single neurons appeared not to
discriminate across the full range (13). For
trials in which reward was predicted with
intermediate probabilities (P � 0.25 to 0.75)
but did not occur, neuronal activity was sig-
nificantly suppressed. The amount of sup-
pression tended to increase with probability
(r 2 � 0.65, P � 0.20 and r 2 � 0.80, P �
0.10 in monkeys A and B, respectively) (Fig.
2, B and D) although the quantification of
suppression may have been limited by the

Institute of Physiology, University of Fribourg, CH-
1700 Fribourg, Switzerland, and Department of Anat-
omy, University of Cambridge, Downing Street, Cam-
bridge CB2 3DY, UK.

*To whom correspondence should be addressed. E-
mail: cdf28@cam.ac.uk

Fig. 1. Conditioned licking behavior increased
with reward probability. The ordinate displays
the mean duration of licking during the 2-s
period from conditioned stimulus onset to po-
tential reward. Each point represents the mean
(�SEM) of 2322 to 6668 trials. Standard errors
are too small to be visible. The behavioral data
shown were collected between the first and last
day of recordings and include data collected in
the absence of physiological recordings.

Fig. 2. Dependence of pha-
sic neuronal responses on
reward probability. (A)
Rasters and histograms of
activity in a single cell, il-
lustrating responses to the
conditioned stimuli and re-
ward at various reward
probabilities, increasing
from top to bottom. The
thick vertical line in the
middle of the top panel
(P � 0) indicates that the
conditioned stimulus re-
sponse to the left and the
reward response to the
right were not from a sin-
gle trial type as in other
panels but were spliced to-
gether. Reward at P � 0.0
was given in the absence of
any explicit stimulus at a
rate constant of 0.02 per
100 ms and thus presum-
ably occurred with a low
subjective probability (11).
Only rewarded trials are
shown at intermediate
probabilities. Bin width �
20 ms. (B) Population his-
tograms of rewarded (left)
and unrewarded (right) tri-
als at P � 0.5 (n � 39,
monkey A, set 1). Bin
width � 10 ms. (C to E)
The median response (n �
34 to 62) measured in
fixed standard windows,
along with symmetric 95%
confidence intervals (bars)
(11). Circles and squares

represent data from analogous experiments, with the squares
representing a subsequent replication of the prior “circle” data
but with distinct visual stimuli and only two or three probabil-
ities tested. Error bars represent standard errors. In (C), the
median magnitude of reward responses as a function of prob-
ability is shown, normalized in each neuron to the response to
unpredicted reward. Unpredicted reward caused a median in-
crease in activity that ranged from 76 to 270% above baseline

for the four picture sets. Analogous to (C), fig. S3A shows means (�SEM) for a subset of responsive
neurons (11). In (D), the median magnitude of responses to no reward as a function of probability is
shown, normalized in each neuron to the response at P � 0.5. Median decreases in activity at P � 0.5
ranged from –22 to –55% below baseline. Symbols represent picture sets as shown in (C). At reward
probability P � 0 for monkey B, a neutral visual stimulus was predicted (P � 0.5) by the conditioned
stimulus. The data point shows the response after the neutral stimulus failed to occur. In (E), responses
to conditioned stimuli are shown, normalized in each neuron to the response to the stimulus predicting
reward at P � 1.0. The median response to this stimulus ranged from 67 to 194% above baseline.
Symbols represent picture sets as shown in (C). The stimuli with P � 0 for monkey A, set 2, and for
monkey B, set 1, predicted the subsequent occurrence of a neutral visual stimulus with P � 0.5.
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low spontaneous activity levels. Conditioned
stimuli elicited the typical phasic activations
(8–10), with their magnitude increasing with
increasing reward probability (r 2 � 0.80,
P � 0.04 and r 2 � 0.69, P � 0.08 in
monkeys A and B, respectively) (Figs. 2, A
and E, and 3, A and B). In summary, the
phasic activations varied monotonically with
reward probability, although further conclu-
sions about the quantitative relations are not
warranted (13).

The present work revealed an additional,
previously unreported activation of dopamine
neurons. There was a sustained increase in
activity that grew from the onset of the con-
ditioned stimulus to the expected time of
reward (Fig. 3, A and B). At P � 0.5, 29% of
188 neurons showed significant increases in
activity before potential reward, whereas 3%
showed decreases (P � 0.05, Wilcoxon test).
By contrast, at P � 1.0, only 9% showed
significant increases, and 5% showed signif-
icant decreases. For the population response,
the sustained activation was maximal at P �
0.5, less pronounced at P � 0.25 and 0.75,
and absent at P � 0.0 and 1.0 (Fig. 3C and
fig. S3B). Statistical analysis revealed a sig-
nificant effect of uncertainty on the popula-
tion response (P � 0.005 in each of four data
sets) (11), indicating that the sustained acti-
vation codes uncertainty (14 ). Furthermore,
the peak of the sustained activation occurs at
the time of potential reward, which corre-
sponds to the moment of greatest uncertainty
(15). The particular function of uncertainty
signaled by dopamine neurons is not known
(13), but we note that common measures of
uncertainty (variance, standard deviation, and
entropy) are all maximal at P � 0.5 and have
highly nonlinear relations to probability, be-
ing very sensitive to small changes in prob-
ability near the extremes (P � 0 or 1).

The phasic and sustained activations dif-
fered not only in timing and relation to re-
ward probability, but also in their occurrence
in single neurons. In Fig. 3D, the magnitude
of the phasic and sustained activation is
shown for each neuron (n � 241). First, a
substantial number of neurons had little or no
response of either type (13); however, the
magnitudes of each type of response fell
along a continuum, with no evidence for
subpopulations among dopamine neurons.
Second, the magnitude of the sustained ac-
tivation showed no consistent relation to
the magnitude of phasic activation across
neurons. This was the case both for the
phasic response to conditioned stimuli (r �
0.095, P � 0.10) and for the response to
unpredicted reward (r � – 0.024) (Fig. 3D).
In contrast, there was a significant positive
correlation of phasic responses between
conditioned stimuli and reward (r � 0.196,
P � 0.01) (fig. S4). Thus, the phasic and
sustained activations appear to occur inde-

pendently and within a single population of
dopamine neurons.

Although the sustained activation occurs
in response to reward uncertainty, it is impor-
tant to know whether it is specific to motiva-
tionally relevant stimuli or generalizes to all
uncertain events. We conditioned two visual
stimuli in a series, with the second following
the first in only half of the trials (P � 0.5).
The stimuli were distinct but entirely analo-
gous to the other stimuli used for condition-
ing. Dopamine neurons showed neither
sustained (Figs. 3C and 4A) nor phasic re-
sponses (Fig. 2, D and E) to either the first or
second of these stimuli. Thus, the sustained
activation seems to be related to uncertainty
about motivationally relevant stimuli.

If the sustained dopamine activation is re-
lated to the motivational properties of uncertain

rewards, it should vary with reward magnitude.
We used distinct visual stimuli to predict the
magnitude of potential reward at P � 0.5 and
found that the sustained activation of dopamine
neurons increased with increasing reward mag-
nitude (n � 84, P � 0.02 in each monkey) (Fig.
4A) (11). The sustained activation could reflect
the discrepancy in potential reward rather than
absolute reward magnitude. To address this is-
sue, we performed an additional experiment (53
neurons in monkey B) in which reward was
delivered in each trial but varied between two
magnitudes at P � 0.5. One stimulus predict-
ed a small or medium reward, another pre-
dicted a small or large reward, and a third
predicted a medium or large reward. The
sustained activation was maximal after the
stimulus predicting the largest variation
(small versus large reward) (P � 0.01) (Fig.

Fig. 3. Sustained activation
of dopamine neurons pre-
cedes uncertain rewards. (A)
Rasters and histograms of ac-
tivity in a single cell with re-

ward probabilities ranging from 0.0 (top) to 1.0 (bottom). This neuron showed sustained activation
before potential reward at all three intermediate probabilities. Both rewarded and unrewarded
trials are shown at intermediate probabilities; the longer vertical marks in the rasters indicate the
occurrence of reward. Bin width � 20 ms. (B) Population histograms at reward probabilities ranging
from 0.0 (top) to 1.0 (bottom). Histograms were constructed from every trial in each neuron in the
first picture set in monkey A (35 to 44 neurons per stimulus type; 638 total trials at P � 0 and 1200
to 1700 trials for all other probabilities). Both rewarded and unrewarded trials are included at
intermediate probabilities. At P � 0.5, the mean (�SD) rate of basal activity in this population was
2.5 � 1.4 impulses per second before stimulus onset and 3.9 � 2.7 in the 500 ms before potential
reward. (C) Median sustained activation of dopamine neurons as a function of reward probability.
In analogy, means (�SEM) are shown in fig. S3B for a subset of responsive neurons (11). Symbols
have the same meaning as in Fig. 2C. For monkey A, set 1, the points at P � 0.25 and 0.75 may
underestimate the amount of sustained activation, as 11 cells with unusually high levels of
sustained activity at P � 0.5 (median activation of 72%) were not tested at P � 0.25 or 0.75. This
was because, at the time of those experiments, the novel form of activation cast doubt on the
dopaminergic identity of the neurons. For P � 0 in monkey A, set 2, and in monkey B, set 1, there
was a 50% chance of a neutral stimulus following the conditioned stimulus. (D) Sustained
responses (at P � 0.5) plotted against phasic responses to unpredicted reward (P � 0) for all
neurons recorded in both monkeys (188 neurons, with an additional 53 neurons tested with
different reward magnitudes as in Fig. 4B; five outlying neurons, in both dimensions, are not
shown).
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4B). These data indicate that the amount of
sustained activation by reward uncertainty in
dopamine neurons increases with the discrep-
ancy between potential rewards.

The present results demonstrate two dis-
tinct response types in dopamine neurons.
Brief, phasic activations changed monotoni-
cally with increasing reward probability,
whereas slower, more sustained activations
developed with increasing reward uncertain-
ty. These sustained activations were not ob-
served in previous studies in which predic-
tions had low uncertainty. Thus, the activity
of dopamine neurons carries information
about two intimately related but fundamen-
tally distinct statistical parameters of reward.
A potentially analogous coding scheme was
identified in neurons of the fly visual system,
in which the visual stimulus and uncertainty
about that visual stimulus appeared to be
coded independently in single neurons (16 ).

By systematically varying reward proba-
bility, we show that the phasic activity of
dopamine neurons matches the quantitative
definition of reward prediction error. Re-

sponses to reward decreased with increasing
reward probability, and, conversely, respons-
es to the predictive stimulus increased. Fur-
thermore, reward always elicited responses
when it occurred at P � 1, even after thou-
sands of pairings between stimulus and re-
ward. By always coding prediction error over
the full range of probabilities, dopamine neu-
rons could provide a teaching signal in accord
with the principles of learning originally de-
scribed by Rescorla and Wagner (17–19).

In addition to those principles described
by Rescorla-Wagner, other basic intuitive
principles of associative learning have been
described, focusing in particular on the im-
portance of attention (20, 21). It is generally
accepted that no single principle alone is
sufficient to explain all observations of ani-
mal learning, and the various theories are thus
considered to be complementary (6, 7 ). The
Pearce-Hall theory proposes that attention
(and thus learning) is proportional to uncer-
tainty about reinforcers (21, 22). As dopa-
mine neurons are activated by reward uncer-
tainty, dopamine could facilitate attention
and learning in accord with the Pearce-Hall
theory. This raises the possibility that two
fundamental principles of learning are em-
bodied by two distinct types of response in
dopamine neurons (23).

The link between uncertainty, attention,
and learning has two related aspects [another
aspect is given in (24 )]. The goal of learning
can be seen as finding accurate predictors for
motivationally significant events. Subjective
uncertainty indicates that the animal lacks an
accurate predictor and thus indicates the util-
ity of identifying a more accurate predictor
(25). Similarly, and as indicated by mathe-
matical principles of information (26 ), only
in the presence of uncertainty is it anticipated
that there will be information available in the
outcome. If reward (P � 1) or no reward
(P � 0) occurs exactly as predicted, that
event contains no information beyond that
already given by the conditioned stimulus;
that is, it is redundant. However, when the
prediction of reward is uncertain, the out-
come (reward or no reward) always contains
information. The outcome at P � 0.5 con-
tains, on average, the maximal amount of
information (one bit) of any probability. The
processing of this reward information is dem-
onstrated by the fact that prediction error
signals are always generated in dopamine
neurons when reward outcomes occur under
conditions of uncertainty. Thus, subjective
reward uncertainty corresponds both to the
utility of identifying more accurate predictors
and to the expectation of reward information.
Through its widespread influence, dopamine
could control a nonselective form of attention
or arousal, which is dependent on uncertainty
and designed to aid the learning of predictive
stimuli and actions.

Although dopaminergic signals may pro-
mote a particular form of attention, an extensive
literature has already established the critical im-
portance of dopamine in reward and reinforce-
ment. Whereas the phasic response of dopamine
neurons to reward prediction error fits remark-
ably well with dopamine’s presumed role in
appetitive reinforcement (10, 17, 18), the acti-
vation by reward uncertainty may appear incon-
sistent with a reinforcing function. This apparent
discrepancy would be resolved to the extent that
postsynaptic neurons can discriminate the two
forms of activity. However, it seems unlikely
that the two patterns of activity can be discrim-
inated perfectly, especially given the slow time
course of dopamine transmission. Rather than
arguing against a role for the activity of dopa-
mine neurons in reinforcement, one might ask
whether reward uncertainty itself has rewarding
and reinforcing properties. Indeed, gambling be-
havior is defined by reward uncertainty and is
prevalent throughout many cultures. Animals
display a potentially related behavior, preferring
variable over fixed reward schedules [for dis-
cussion, see (27) and (28)]. The present results
suggest that dopamine is elevated during gam-
bling in a manner that is dependent on both the
probability and magnitude of potential reward.
This uncertainty-induced increase in dopamine
could contribute to the rewarding properties of
gambling, which are not readily explained by
overall monetary gain or dopamine’s corre-
sponding role in prediction error (as losses tend
to outnumber gains) (29). The question arises as
to why a reward signal would be produced by
reward uncertainty. Although risk-taking behav-
ior may be maladaptive in a laboratory or casi-
no, where the probabilities are fixed and there is
nothing useful to learn, it could be advantageous
in natural settings, where it would be expected
to promote learning of stimuli or actions that are
accurate predictors of reward (25). Thus, the
sustained, uncertainty-induced increase in dopa-
mine could act to reinforce risk-taking behavior
and its consequent reward information, whereas
the phasic response after prediction error could
mediate the more dominant reinforcement of
reward itself.

References and Notes
1. R. P. N. Rao, D. H. Ballard, Nature Neurosci. 2, 79

(1999).
2. D. M. Wolpert, Z. Ghahramani, Nature Neurosci. 3

(suppl.), 1212 (2000).
3. E. K. Engel, P. Fries, W. Singer, Nature Rev. Neurosci.

2, 704 (2001).
4. R. P. N. Rao, B. A. Olshausen, M. S. Lewicki, Eds.,

Probabilistic Models of the Brain (MIT Press, Cam-
bridge, MA, 2002).

5. C. R. Gallistel, The Organization of Learning (MIT
Press, Cambridge, MA, 1990).

6. A. Dickinson, Contemporary Animal Learning Theory
(Cambridge Univ. Press, Cambridge, 1980).

7. J. M. Pearce, An Introduction to Animal Cognition
(Lawrence Erlbaum, Hove, UK, 1987).

8. W. Schultz, P. Apicella, T. Ljungberg, J. Neurosci. 13,
900 (1993).

9. P. Waelti, A. Dickinson, W. Schultz, Nature 412, 43
(2001).

Fig. 4. Sustained activation is dependent on the
discrepancy in potential reward magnitude. (A)
All stimuli predicted potential reward (0.05,
0.15, or 0.5 ml of liquid) or a neutral picture at
P � 0.5. Data are from 35 cells in monkey A
and 49 cells in monkey B. (B) Each stimulus
predicted that reward would be one of two
potential magnitudes, each at P � 0.5, as indi-
cated on the abscissa. Every trial was rewarded
with one of the two potential reward magni-
tudes. Data are from 53 cells in monkey B.

R E P O R T S

www.sciencemag.org SCIENCE VOL 299 21 MARCH 2003 1901

 o
n 

Ja
nu

ar
y 

28
, 2

00
9 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org


10. W. Schultz, J. Neurophysiol. 80, 1 (1998).
11. Materials and methods are available as supporting

material on Science Online.
12. Simple linear regression coefficients for each type of

phasic response were calculated for each set of data for
which all probabilities were tested (P � 0.0, 0.25, 0.5,
0.75, and 1.0 in Fig. 2, C and E; P � 0.0, 0.25, 0.5, and
0.75 in Fig. 2D). This was done only as an approximation
and does not imply linearity in the response functions.
In addition to the nonlinear factors discussed in (13),
there is imprecision in the subjective timing of the 2-s
interval between stimulus onset and potential reward
(15). This probably accounts for the small but signifi-
cant activation to “fully” predicted reward in monkey A
(Figs. 2C and 3B).

13. Unpublished data (30), as well as Figs. 3 and 4, suggest
that the responses of dopamine neurons multiplicative-
ly combine the probability and magnitude of reward.
Thus, it is not necessarily the case that the maximal
responses observed in this study for a given reward
magnitude (those at P � 0.0, 0.5, or 1.0, depending on
the type of response) are actually the maximal evoked
responses of a given neuron. One would expect that,
like other neurons coding the intensity of a signal,
dopamine neurons have a stimulus-response function
that is sigmoid, being insensitive to values above or
below a particular range. The likelihood that individual
neurons have distinct thresholds has critical implica-
tions for understanding the shape of the probability-
response functions presented in Figs. 2 and 3 and could
explain why many neurons shown in Fig. 3D appear to
be unresponsive. The shape of the probability functions
that we measured would depend on the range of values
to which most of the neurons are sensitive. Because
these ranges are unknown, the only interpretation that
should be given to the data at this time is that dopa-
mine neuronal responses follow probability or uncer-
tainty in a monotonic fashion.

14. The present experiments were performed with a stan-
dard delay conditioning procedure, meaning that the
conditioned stimulus remained on for the full 2-s delay
until the potential time of reward. In a separate experi-
ment, a smaller number of neurons (n � 22) were tested
with trace conditioning in which the conditioned stim-
ulus indicating the probability of reward was on for 1 s,
and potential reward occurred following an additional
1-s interval after stimulus offset. Although there may
have been some sustained activation in the trace condi-
tion at P � 0.5 (P � 0.1), the activity preceding potential
reward (during either 250- or 500-ms periods) was sig-
nificantly less than that in experiments with delay con-
ditioning (P � 0.05, Mann-Whitney test). Furthermore, a
distinct behavioral pattern emerged with trace condi-
tioning; the likelihood of licking increased before stimu-
lus offset, decreased subsequently, and then increased
again before reward. The explanation for the apparent
discrepancy between trace and delay conditioning is
unclear, but it could be related to the presence of
temporal information provided by the continued pres-
ence of the delay stimulus; that is, as long as the delay
stimulus is present, the time of potential reward must
not have passed, and this information could suppress
incoming inhibitory signals that are (imprecisely) timed
to coincide with potential reward (15).

15. Objectively, potential reward always occurred after a
2-s delay. However, it is known that subjective timing
is imprecise. Thus, the time course of the slowly
developing sustained activation could reflect the in-
creasing likelihood that the interval is nearing com-
pletion. Unpublished data (30) on the phasic activa-
tion of dopamine neurons to the delivery of reward
earlier or later than predicted suggest a similar de-
gree of temporal imprecision in the prediction. It is
therefore reasonable to hypothesize that dopamine
neurons code the uncertainty in reward in the sub-
sequent moment (the very near future).

16. A. L. Fairhall, G. D. Lewin, W. Bialek, R. R. de Ruyter
van Steveninck, Nature 412, 787 (2001).

17. R. R. Montague, P. Dayan, T. J. Sejnowski, J. Neurosci.
16, 1936 (1996).

18. W. Schultz, P. Dayan, R. R. Montague, Science 275,
1593 (1997).

19. R. A. Rescorla, A. R. Wagner, in Classical Conditioning
II: Current Research and Theory, A. H. Black, W. S.

Prokasy, Eds. (Appleton-Century-Crofts, New York,
1972), pp. 64–69.

20. N. J. Mackintosh, Psychol. Rev. 82, 276 (1975).
21. J. M. Pearce, G. A. Hall, Psychol. Rev. 87, 532 (1980).
22. H. Kaye, J. M. Pearce, J. Exp. Psychol. Anim. Behav.

Process. 10, 90 (1984).
23. The fact that there are two distinct dopamine signals,

each with unique properties, suggests two distinct
functions for dopamine. However, this does not nec-
essarily imply that the two signals must be processed
independently. Thus, each signal may contribute to
the performance of two or more functions. Further-
more, questions concerning the functions of dopa-
mine in target areas (such as reinforcement and
attention) are distinct from questions about the qual-
itative nature of stimuli (rewarding versus attention-
inducing) that contribute to the activation of dopa-
mine neurons (31).

24. P. Dayan, S. Kakade, P. R. Montague, Nature Neurosci.
3 (suppl.), 1218 (2000).

25. In the artificial, impoverished conditions of a laboratory
setting or a casino, the probabilities associated with
particular stimuli or actions are fixed, and there is
nothing else useful to be learned. However, the natural
environment contains a high degree of correlation be-
tween a multitude of events; this is implicit in the
adaptive utility of associative learning. Thus, an animal
should not assume that uncertainty signals the objec-
tive absence of accurate predictors but rather that it is
ignorant of those predictors. Although accurate predic-
tors of reward may not always be present in the envi-
ronment, one would not expect the learning machinery
of the brain to assume their absence. In fact, there is a
period of uncertainty about all rewards before accurate
predictors are found. If subjective uncertainty is as-
sumed to result from ignorance of predictors rather
than absence of predictors, then it would be appropriate
for subjective uncertainty to have attention-inducing
and reinforcing properties that would ultimately en-
hance learning and reduce uncertainty.

26. C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
27. C. R. Gallistel, J. Gibbon, Psychol. Rev. 107, 289

(2000).

28. J. E. Mazur, Psychol. Rev. 108, 96 (2001).
29. Alternative attempts to explain gambling behavior

focus on the fact that people (particularly those with
prefrontal deficits) may misperceive reward probabil-
ities or magnitudes or combine them in an inappro-
priate manner. This “cognitive” hypothesis fails to
explain why gambling is appealing (and sometimes
addictive) to a large number of otherwise healthy
people, most of whom are aware that the odds are
against them and that they have lost and will con-
tinue to lose money. In addition, any attempt to
explain gambling behavior must address the fact that
gambling is common at all probabilities (except P �
0 or 1, by definition) and all reward magnitudes. The
present work suggests that activation of dopamine
neurons may occur to a comparable extent during
the expectation of a small reward at intermediate
probabilities or a large reward at low probabilities.
Thus, dopamine could contribute to the appeal of
gambling in general. A behavior as prevalent as gam-
bling must be explained in terms that are consistent
with natural selection. The present hypothesis does
so by pointing out that risk-taking promotes learning
in natural environments.

30. C. D. Fiorillo, P. N. Tobler, W. Schultz, unpublished
data.

31. P. Redgrave, T. J. Prescott, K. Gurney, Trends Neurosci.
22, 146 (1999).

32. We thank A. Dickinson, S. Baker, R. Moreno, K. Tsut-
sui, I. Hernadi, P. Dayan, and two anonymous review-
ers for helpful comments on the manuscript. Funding
was provided by the Human Frontiers Science Pro-
gram (C.D.F.), Swiss National Science Funds (W.S.
and P.N.T.), and Wellcome Trust (W.S.).

Supporting Online Material
www.sciencemag.org/cgi/content/full/299/5614/1898/
DC1
Materials and Methods
SOM Text
Figs. S1 to S4
References and Notes

14 August 2002; accepted 12 February 2003

Identified Sources and Targets of
Slow Inhibition in the Neocortex
Gábor Tamás,* Andrea L �orincz, Anna Simon, János Szabadics

There are two types of inhibitory postsynaptic potentials in the cerebral cortex.
Fast inhibition is mediated by ionotropic �-aminobutyric acid type A (GABAA)
receptors, and slow inhibition is due to metabotropic GABAB receptors. Several
neuron classes elicit inhibitory postsynaptic potentials through GABAA recep-
tors, but possible distinct sources of slow inhibition remain unknown. We
identified a class of GABAergic interneurons, the neurogliaform cells, that, in
contrast to other GABA-releasing cells, elicited combined GABAA and GABAB

receptor–mediated responses with single action potentials and that predom-
inantly targeted the dendritic spines of pyramidal neurons. Slow inhibition
evoked by a distinct interneuron in spatially restricted postsynaptic compart-
ments could locally and selectively modulate cortical excitability.

Gamma-aminobutyric acid (GABA) is the ma-
jor inhibitory transmitter in the cerebral cortex
(1). Extracellular stimulation of afferent cortical
fibers elicits biphasic inhibitory postsynaptic
potentials (IPSPs) in cortical cells. The early
phase is due to the activation of GABAA recep-

tors resulting in Cl– conductance, and the late
phase is mediated by K� channels linked to
GABAB receptors through heterotrimeric GTP-
binding proteins (2–6). Although dual record-
ings revealed several classes of interneurons
evoking fast GABAA receptor–mediated re-
sponses in the postsynaptic cells, it is not clear
whether distinct groups of inhibitory cells are
responsible for activating GABAA and GABAB

receptors. GABAergic neurons terminate on
separate subcellular domains of target cells (7,
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